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We report the fabrication of TiO2 nanostructures with lithographically defined templates.
Interferomeric-lithography was used to define soft templates �polymer posts�, and a sol-gel solution
was deposited on a patterned surface. In the final step, calcination was employed to form uniform
low aspect-ratio crystalline nonclose-packed TiO2 nanotube arrays over a large area. Similarly,
nanotree arrays and parallel nanotunnels were prepared as well. The position and morphology of
TiO2 nanostructures were well controlled. These TiO2 nanostructures have a potential technological
importance in clean energy, biosensor, and drug release. © 2010 American Institute of Physics.
�doi:10.1063/1.3521462�

Since self-ordering of TiO2 nanotubes was discovered
using titanium anodization,1–3 intense research has been car-
ried out to optimize fabrication approaches and find
applications.4 Beyond the vertical TiO2 nanotubes achieved
by a simple one-step electrochemical self-assembly process,
other types of TiO2 nanostructures with different fabrication
approaches and templates are also of interest; to date, rela-
tively simple preparation methods based on a sol-gel process
have been pursued. For example, crystalline titania nanorings
were fabricated with monolayer particle templates and sol-
gel deposition.5,6 Complex crystalline titania structures were
prepared with bio-organic templates �e.g., butterfly wing
scales� and the use of layer-by-layer sol-gel deposition.7 The
resulting synthesized replicas had a rutile structure using
dopant sol-gel solution and calcination at relatively low tem-
peratures of �450 °C. In addition, physical deposition tech-
niques such as pulsed laser deposition were developed to
fabricate hierarchical TiO2 nanostructures by combining col-
loidal monolayers.8

TiO2 is a useful functional material due to its wide
application in the field of photocatalysis,8,9dye-sensitized
solar cells,10 lithium-ion batteries,11 and superhydrophobic/
superhydrophilic materials.8,12 Well-controlled morphologies
of titania nanostructures are critical for these applications.
Close-packed nanotube/nanoring arrays of titania have been
intensively studied, but other nanoscale morphologies of
TiO2 nanostructures such as nonclose-packed, low aspect-
ratio titania nanostructures could provide compelling uses in
morphology-dependent applications.

Even though interferometric lithography �IL� has been
used to generate templates for the fabrication of simple two-
dimensional �2D� metal nanowires and nanorings with elec-
trochemical deposition,13 it is still a challenge to use IL to
produce templates for the fabrication of TiO2 nanostructure
arrays.

Here, we present a simple approach for fabricating
position-controlled TiO2 nanostructure arrays by sol-gel
deposition using photoresist patterns as templates. The pho-

toresist pattern templates were fabricated with IL. After sin-
tering at 600 °C, the crystal structure of the ordered TiO2
nanostructures changes from amorphous to anatase, while
maintaining the original morphology.

IL is a facile, inexpensive, large area, lithographic
method for the fabrication of periodic nanostructures and
functional materials.14 The patterns produced with IL are of-
ten used for further fabrication15,16 in applications such as
optics,17,18 biosensors,19 and nanofluidic devices.20 Here, we
used IL to produce one-dimensional �1D� and 2D photoresist
�PR� patterns with periodicities in the range of
300 nm to 2 �m. Smaller periodicity ranges, up to 90 nm,
are readily accessible with immersion approaches.21

Figure 1 shows the scanning electron microscopy �SEM�
images of 2D PR patterns and the corresponding prepared
TiO2 nanostructures. The PR posts were fabricated with IL

a�Electronic addresses: dyxia@mit.edu and brueck@chtm.unm.edu.

FIG. 1. �Color online� SEM images: ��a� and �b�� photoresist patterns; ��c�
and �d�� nanodrum; ��e� and �f�� nanodrum with breaking during cleavage,
showing the hollow structure; side view in the left column, and tilted 45°
view in the right column.
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using positive PR. The periodic PR posts are on a square
array using double IL exposures with 90° rotation between
the two exposures �Figs. 1�a� and 1�b��. IL has the advan-
tages of uniform patterns over large areas, and flexibility of
pattern morphologies �line/space duty cycle, periodicity, and
variations, e.g., hexagonal, in the array patterns by changing
the rotation angle between exposures�.22 With spin-coating
deposition of a sol-gel solution and calcination, 2D nano-
structures of TiO2 were obtained, as shown in Figs.
1�c�–1�f�. Importantly, the hollow structure of the individual
shapes is obvious from the observations of broken TiO2
nanostructures �Figs. 1�e� and 1�f��. The dimensions of the
TiO2 nanostructures are slightly smaller than those of the PR
post due to the shrinkage of TiO2 nanostructures during the
processing of spin-coating and calcinations. The shrinkage of
resultant TiO2 nanostructures compared to the original PR
templates are caused by both the partial dissolution of PR
templates upon coating with the sol-gel solution and forma-
tion of TiO2 nanostructures in calcination processing. The
top surface of TiO2 nanostructures is uneven in the images.
The TiO2 nanostructures with 870 nm periodicity have an
�220 nm diameter, are 400 nm high, and 20 nm thick.

The calcination was performed at 600 °C for 3 h. The
temperature is high enough to totally burn out the PR pat-
terns. In our preliminary experiments, we investigated the
effects of changing the calcination temperatures on the mor-
phology of the PR templates. The PR patterns �posts as
shown in Figs. 1�a� and 1�b�� restructured into polymer
lenses after 3 h of calcination at 450 °C for a bare PR pat-
terned sample, while the PR patterns were totally vaporized
after 3 h of calcination at 600 °C. The diffraction color of
the periodic patterns on a PR patterned sample provided an
easy method to verify the temperature effect. Therefore, we
used calcination at 600 °C for 3 h in air to form the TiO2
nanostructures.

Transmission electron microscopy �TEM� was used to
examine further the morphology and crystallinity of the TiO2
nanostructures. The TEM samples were prepared by scratch-
ing the as-prepared samples and capturing the TiO2 frag-
ments with a Cu TEM grid sample holder. Figure 2 shows
both low-resolution and high-resolution TEM images. These
images further confirm that TiO2 nanostructures are hollow,
closed-end short nanotubes. It is apparent that these TiO2
nanostructures have relatively uniform sizes �Figs. 2�a� and
2�b�� with wide openings at the bottom. TEM images in Figs.
2�c�–2�e� exhibit three, two, and one TiO2 nanostructures,
respectively, from the side view, while the TEM image in
Fig. 2�f� shows the top view of a TiO2 nanostructure which
appears to be ring shaped. These findings are consistent with
the SEM observations. These images indicated that the tita-
nia sol-gel coating uniform is conformal to the polymer sur-
face.

The calcination at 600 °C for 3 h both vaporizes the
polymer templates and converts the coating into nanocrystal-
line titania. The nonclose-packed, short titania nanotube ar-
rays were retained after firing at 600 °C. High-resolution
TEM �HRTEM� images revealed that the titania was mainly
in the anatase phase �Fig. 2�g��.23 With further calcination or
modification of sol-gel solution by introducing tin �IV� iso-
propoxide as a rutile-promoting dopant, the TiO2 nanostruc-
tures will be converted to the rutile TiO2 crystal structure.8

With electrostatic layer-by-layer deposition of titania nano-
particles using polymer templates defined by IL, continuous

anatase titania wires or dots would be achieved through cal-
cinations at 500 °C for 2 h.24

We also investigated other sol-gel deposition methods
and extended the spin-coating method to other morphologies
of PR patterns such as 1D structures �Fig. 3�. A sandwich

FIG. 2. �Color online� TEM images: ��a� and �b�� TiO2 nanostructrures; �c�
three TiO2 nanostructrures; �d� two TiO2 nanostructrures; �e� single TiO2

nanostructure; �f� top view of single TiO2 nanostructure; �g� HRTEM show-
ing anatase lattice, right one is a magnified image and a white dashed square
in left image.

FIG. 3. �Color online� SEM images of TiO2 nanostructures: ��a� and �b��
nanotrees; �c� 1D PR patterns; �d� nanochannels.
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sol-gel method was used as well to apply the solution be-
tween two glass plates.5 A different morphology of TiO2
nanostructures was achieved on 2D PR post templates �Figs.
3�a� and 3�b��. The TiO2 nanostructure exhibited the shape of
a nanotree with a slim trunk and a wide crown �Fig. 3�a��.
Even though the TiO2 nanostructure arrays over the whole
sample were obtained using this deposition approach, the
morphology of nanotrees is not uniform �Fig. 3�b��. The
TiO2 nanotree structures were caused by the partial dissolu-
tion of the PR patterns in titanium �IV� isopropoxide solution
in this sandwich deposition method. In our preliminary ex-
periments, after the samples with 2D PR patterns were im-
mersed into an isopropanol solution for 2 h, the 2D PR posts
were deformed.

One-dimensional PR walls were also employed to form
1D TiO2 nanostructures using a spin-coating deposition
method. Parallel TiO2 nanotunnels were fabricated with 1D
PR wall templates �Figs. 3�c� and 3�d��. The nanotunnels
have wide bottoms and uneven roofs �including some open-
ings�. Shrinkage of 1D TiO2 structures was observed as well,
especially in the height of the nanotunnels. The morphology
�long parallel wall, narrow top surface, etc.� of 1D PR walls
was attributed the formation of 1D TiO2 nanotunnels, which
have less fidelity to templates in spin-coating deposition and
calcination processes. Compared to the previous work with
IL-defined templates, sol-gel processing, and calcination,25

we fabricated nanochannel structures instead of nanowires
using our approach on a 1D template.

It is relatively easy to fabricate close-packed ultralong
TiO2 nanotube arrays with anodization and nanoring films
with colloidal lithography. However, it is difficult to fabri-
cate low aspect-ratio nanostructures with tailored
morphologies.26 Compared to conventional morphologies
�nanotubes and nanorings�, unique morphologies of low
aspect-ratio nanotubes with nonclose-packed arrays, nanotree
arrays, and parallel nanotunnels were fabricated with inter-
ference lithography using our methods. Moreover, a continu-
ous flat sheet of TiO2 between the structures appears to con-
nect these structures. Combined with standard optical
lithography, the corresponding devices are easy to fabricate
on substrates with position-control of the TiO2 nanostruc-
tures. In addition, this approach will be applicable to the
fabrication of other kinds of inorganic hollow structures us-
ing related sol-gel solutions with IL-defined templates.27

In summary, various titania nanostructures were fabri-
cated using lithographically defined polymer templates. The
polymer templates including 1D and 2D patterns in a nano-
scale were easily formed with interferometric lithography.
The morphology of templates was easy to control in interfer-
ence lithography step with the advantage of flexible control
of the interferometic lithography pattern. With spin-coating
deposition of sol-gel solution and subsequent hydrolysis
step, uniform 2D closed-end low aspect-ratio nanotube ar-
rays were prepared over large areas in nonclose-packed ar-
rays. The crystalline phase of titania nanostructures could be
controlled in the hydrolysis step. Furthermore, the nanotree
and nanotunnel structures were fabricated as well with IL-
defined templates. Compared to the previous research,24,25

we can fabricate hollow TiO2 nanostructures �short nano-
tubes and nanotunnels� instead of nanowires and nanoholes
using our approach. These TiO2 nanostructures have techno-
logical importance in clean energy,28,29 biosensors,30 and
controlled drug release.31
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